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Abstract. Elastomers and gels are characterised by a large ratio of the bulk to the shear 
modulus, and are consequently capable of propagating shear waves of very low velocity. 
We have elsewhere examined the normal modes excited in gels contained in rectangular 
cells of infinite length with rigid boundary conditions, and have shown that the fundamental 
mode consists of a roller structure which is periodic along the long axis of the cell. Here 
we extend the variational analysis to include gels of semi-infinite length and of square 
cross-section with one end free; it is found that the fundamental is a localised mode, in 
which the motion of the gel is confined to the vicinity of the free surface. Gels of finite 
length with a free end are also investigated. Experimental observations are made both of 
quasi-longitudinal and of quasi-transverse modes in polyacrylamide gels; good agreement 
is found between the measured frequencies of the first few modes and the calculated 
eigenfrequencies for this system. 

1. Introduction 

In a recent article we described an investigation of the fundamental shear modes that 
can be excited in an incompressible elastic medium rigidly held inside an infinitely 
long prism of square cross-section (Ayant et a1 1982-reference A). Experimental 
observations of similar modes have been reported (Brenner et a1 1978, Nossal and 
Brenner 1978, Gelman and Nossal 1979, Nossal and Jolly 1982, Geissler and Hecht 
1980), although limited to finite systems; these observations have furthermore generally 
been confined to gels with one free surface, a condition which could profoundly modify 
the eigenmodes. Until now, the normal modes for such systems with rigid boundaries 
have not been analysed. 

An application of such investigations is to be found in the study of rubbers and 
elastomers, where a knowledge of the shear modulus G is of paramount importance. 
G, which depends on the microscopic configuration of the constituent polymer chains 
(Treloar 1975), defines the suitability of these materials in a wide range of industrial 
and other applications. It is frequently useful to know the shear modulus of an 
elastomeric polymer solution or gel at the same time as its optical properties. Since 
the latter are often most conveniently observed with cells of square cross-section, an 
in situ investigation of the shear modulus requires a knowledge of the allowed modes 
in this geometry. The determination of the shear modulus by the normal mode technique 
possesses certain well known advantages over other methods: the small amplitude of 
the motions necessary to obtain a measurable response, the precision of the frequency 
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measurements, and the well defined boundary conditions (this last consideration is 
particularly important in the case of soft gels). It therefore seems appropriate to extend 
our previous investigation to include finite systems with a free end surface, and to 
compare the results with the observed resonances in the gel. 

In the present article the variational techniques of reference A are extended to 
calculate not only the fundamental frequency, but also the next higher modes. In the 
previous cases, as also in the case of finite three-dimensional systems where all the 
boundaries are rigid, the task of obtaining an accurate numerical solution was straight- 
forward, although tedious, using the Rayleigh variational theorem and a Fourier 
expansion for the trial functions. In the case of interest here, however, that of a prism 
with one end free, the truncated Fourier series method becomes intractable, because 
the displacement vector can no longer be expressed in terms of simple orthogonal 
basis functions in the form of products of sines and cosines. For this reason, we are 
forced to use an approximate variational treatment, using trial functions of the appropri- 
ate symmetry and chosen to satisfy the boundary conditions, while containing a single 
adjustable parameter. This procedure has been known since its inception to give very 
good approximations to the exact result (Rayleigh 1945). Tests between the approxi- 
mate trial function method and the truncated Fourier series method, in the case of a 
finite three-dimensional gel with no free surfaces, gave a maximum difference of 0.7% 
in the estimation of the first six eigenfrequencies. Because of this accuracy, some 
confidence can be placed in the use of the single trial function method in the present 
case where a free surface exists. 

The first part of the article, after a brief description of the variational method used, 
is devoted to solving the motion of the incompressible gel inside an infinitely long 
prism of square cross-section with one end surface free; the case of the gel of finite 
length is then investigated. The second part of the article concerns the experimental 
observations and their confrontation with the calculations. 

2. Variational analysis of small oscillations in an incompressible medium 

Our object is to determine the normal modes and eigenfrequencies of a gel which 
adheres, without slipping, to the walls of the containing cell. We shall, for the moment, 
neglect frictional effects ; this omission is easily rectified, however, by the inclusion of 
a simple dissipation process. 

In the problem investigated, we consider a vector u(x, t )  which describes the 
displacement of a point in the gel. We examine the case of a sample of volume Y of 
an isotropic body, with bulk compressional modulus K and shear modulus G. The 
potential energy of the sample may be expressed by means of the strain tensor 

and of the stress tensor, which in this case is given by 

As we are concerned with the limiting case where K tends to infinity, it is necessary that 

(3) v * u = o .  
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Hence we obtain directly the following expression for the potential energy V, 

V = G z  d3xr;, 
ij 5 

which, on account of equations (1) and (3) reduces to 

(4) 

where S is the boundary surface of the sample and n is the outwards directed normal 
to the surface. 

Equation (5) is applicable to the case of a gel with a free surface. When all the 
surfaces are held rigid, the second term in (5) vanishes and the potential energy reduces 
to 

In order to determine the normal modes of the system, we use a variational technique 
due to Rayleigh (1945), which is applicable to all problems of small movements, and 
which relies on the stationary properties of the eigenfrequencies. The principle of the 
technique is outlined as follows. 

The potential energy of the system, defined according to ( 5 )  or (6 )  may be re- 
expressed in the form 

V = +GI. (7) 
The kinetic energy T is given in the present case by 

where p is the density of the medium and U represents the time derivative of u(x ,  t )  = 
u ( x )  sin(wt). The requirement that the total energy T + V be time independent is 
ensured by equalising the coefficients of sin2(wt) and cos2(wt) in T + V: this can be 
done be defining a function S,  associated to T, such that 

= $pJ. (9) 
The required time independence of T + V is then obtained when 

(10) w 2 =  VIS, 

w 2  = ( V 1 S ) e x t r e m u m .  (1 1) 

and the condition that U be a normal mode is that VIS be stationary, i.e. 

It should be emphasised that, although Rayleigh does not formally define the associated 
function S as in (9), this method is entirely equivalent; the presentation chosen here 
is simply for the purpose of convenience. 

The variational approximation introduced by Rayleigh then consists of substituting 
for u ( x )  in relation (1 1) a suitable trial function containing one or more adjustable 
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parameters; the approximate stationary values of V I S  are found on varying these 
parameters. 

The task is thus reduced to looking for a vector field u ( x )  which obeys the 
incompressibility condition (3) and  the boundary condition u ( x )  = 0 at the cell walls. 
Hence the frequencies w of the corresponding approximate normal modes are given 
by the Rayleigh condition (1 1). 

For convenience, we use the integrals I and  J as defined by relations (7) and (9). 
Designating by E the stationary value of I / J ,  we obtain from (1 1) 

where E = w 2 p / G  has the dimensions of the square of a wave vector. 
In reference A (Ayant et a1 1982), i t  was shown that the formulation of (12) is 

equivalent to the standard equation of motion for an incompressible medium, namely 

v A (v' + E ) u  = 0. (13) 

3. Three-dimensional cell with free surface 

3.1. General considerations 

Here we examine the case of an  incompressible gel contained in a cell of square 
cross-section, with one end free. The effects of surface tension are neglected (see 9 6). 
Two situations are investigated, a gel of semi-infinite length in the +z direction, and  
a gel of finite length b in the +z  direction. The limits of the gel in the x and y directions 
are taken to be at + 1, and the free surface is placed at z = 0. 

It is worthwhile remarking that the symmetry of such samples with a free surface 
is C$; thus, according to group theory, the normal modes should fall into five distinct 
symmetry types: A , ,  A2,  B , ,  B2 and E. Of these the first, A , ,  will be excluded from 
consideration since it is totally symmetric, and  involves a volume change in the sample 
which is supposed to be incompressible. The second, which corresponds to a rotation 
about the C, or z axis, defines modes which we shall call quasi-transverse (QT). The 
second type of mode investigated in this paper involves movement along the z axis 
and belongs to the representation E ;  these are designated quasi-longitudinal (QL). B ,  
and B2 are similar to the QL modes, but are described by wave numbers much larger 
than those considered here, and consequently lie beyond the region of interest close 
to the fundamental frequency. Since the QT modes involve movements approximately 
parallel to the x-y plane, the trial functions proposed will have zero z component: 
the surface integral in (5) thus vanishes, and  the problem simplifies considerably. This 
case will be treated after the discussion of the QL modes. 

We emphasise the fact that the distinction between QL and  QT modes is linked to 
the concept of a continuous variation between the present case and  that of the infinitely 
long prism: either mode can be written in the form u,(x, y ,  z )  = u,(x, y )  exp(ik,z), where 
j = x, y ,  z. One examines what happens when k, tends to zero. Reference A shows 
that either the components U, and uy tend to zero (QL), or the component U, tends to 
zero (QT). 

3.2. Quasi-longitudinal modes 

In this case the displacement of the gel perpendicular to the free surface is non zero, 
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and the surface contribution to the potential energy in ( 5 )  must be taken into account. 
Using (7), we rewrite ( 5 )  as 

= I” + I s .  (14) 

In the case of the QL modes, the displacement U is approximately confined to a plane 
parallel to one of the sides of the prism. Because of the square cross-section, we may 
choose the y-axis to lie perpendicular to this side, and then U, -- 0. The components 
of the trial function obeying the boundary conditions may be chosen as 

U, = u,(x, z )  c o s ( r y / 2 )  

U, = 0 

U, = u,(x,  2) cos(ry/2). 

By means of this separation of the variable y, it is shown in the appendix how the 
three-dimensional expression for I in (14) can be reduced to a two-dimensional one 
by the use of a two-variable potential 4 ( x ,  z) defined by 

u,(x, 2) = w / a z ,  U J X ,  Z) = + + / a x .  (16) 

E(3D) = E(2D)  sir2. (17) 

4 ( x ,  z )  = (1 +cos r x ) g ( z ) ,  

The three-dimensional eigenfrequencies are related to the two-dimensional ones by 

We may then try 

(18) 
which satisfies the boundary conditions. The stationary condition now concerns only 
the variable function g ( z ) .  

The integrals of the variational procedure can now be written 

J = I ( r 2 g 2  +3g’*)  dz (19) 

and 

I” = r 2 ~  + I* ,  (20) 
with 

I* ,  = (3g”‘-  r ’g’ ’ )  d z ,  I 
I ,  = -27T’g(O)g’(O), ( 2 2 )  

where g’ and g” represent respectively the first and second derivatives of g, and the 
free surface is located at the end z = O ;  the rigid end is located at z =  b. The rigid 
boundary constraint at z = b requires that 

( 2 3 )  g( b )  = g’(  b )  = 0.  

It is of interest to note that the variational treatment used here does not impose any 
explicit boundary conditions at the free surface: nevertheless, a treatment based on 
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the standard propagation equation (1 3), together with the incompressibility condition 
(3), should make use of well known boundary conditions that cancel certain components 
of the stress tensor at  the free surface. We have verified that these cancellations are 
inherent in the variational treatment. 

We now apply the variational procedure. Introducing a small variation 6g in g, 
with attendant variations S I  and SJ  in I and J respectively, and integrating by parts, 
one gets from (19) and  (21) 

i S J  = lob (rr’g -3g”)ag d z  - 3g‘(O)Sg(O) 

and 

f6I$ = job (3g”” + rr’g”)Sg d z  - 3g”(O)Sg’(O) +(3g”’(O) + 7r2g’(0))Sg(O). (25) 

From (22) we likewise obtain 

$Is = -7r2(6g(0)g‘(0) +g(O)Sg’(O)). (26) 

This allows us to set the stationary condition as 

6 I *  = E*SJ, 

where 

and SI* = SI*, +619 (28) 
E * = E - r ,  2 

3g”” + ( n 2  +3  E*)g”+ rr2E*g = 0, 

3g”(O) + 7r2g(0) = 0 

g“’(0) + E*g’(O) = 0. 

Combining equations (23)-(26), we find that g(z) satisfies the fourth-order equation 

(29) 
together with the following boundary conditions at z = 0 

(30) 

(31) 

We are now in a position to consider the two cases, that of the semi-infinite cell, 
and secondly the cell of finite length. 

3.2.1. Semi-injinite cell. When b is allowed to go to infinity, (29) allows solutions of 
the form exp(ikz), with k given by 

(32) k: = rr2[$t-f*( i t2-$)’ /2] ,  

where 

t = E / r r 2 .  

When t 2  < 8/9, complex values of k occur; this implies a localised mode. We shall 
set A =ik,  where it is understood that RA < O .  Thus 

(33) g(z) = A exp(Az) + A  exp(Xz), 

where the bar denotes the complex conjugate. 
To ensure the boundary conditions (30) and (31), we must have the determinant 

3A2+7r2 3X2+7r2 1 
IA’+E*I x 3 + E * X  = 0. (34) 
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This gives, on simplifying 

3 1 A 1 4 - f ~ 4 - ( ~ 4 / 3 1 A ( 2 )  -3E*IA12=0 

with 

IAI4= r4(l -t ) /3 .  

By setting t = 1 - u2/3 in (35) and (36), we get 

1 - U  - u 2 -  u3 = 0. 

which contains only one real root, namely 

U = 0.5437, 

that is, 

E = 8.897. 

(35) 

(36) 

(37) 

This value for E falls significantly below the lowest value obtained in the case of an  
infinitely long gel in two dimensions with no free surfaces (reference A), namely 9.27, 
and this is related to the fact that the mode is localised. Figure 1 shows a sketch of 
the gel displacement incurred in this mode. It is worth remarking that at the stationary 
condition the value of the wave vector corresponding to the imaginary part of A is 
1.2 14, only slightly shifted from the value of k = 1.200 for the repetitive roller structure 
found in the infinite case with no free surfaces. 

Figure 1. Displacement vectors of the localised mode in a semi-infinite two-dimensional 
gel. The free surface is represented by a discontinuous straight line, to the right of which 
extends the gel. On the scale used in the figure, the length of the displacement vectors 
becomes vanishingly small at depths greater than about twice the width of the cell. 

3.2.2. Finite cell. The fundamental mode in a cell of finite length can be seen by 
continuity from the semi-infinite case. It is convenient to reverse the previous arrange- 
ment, and  to locate the fixed surface at z=O, and the free surface at z =  b. Then the 
solution g(z) of (29) is a linear combination of four functions 

u(z) = exp(yz) cos(qz) 

w ( z )  = exp(-yz) cos(qz) 

u(z) = exp(yz) sin(qz) 

r( z) = exp( - y z )  sin( qz) 

(here the u ( z )  should not be confused with the displacement vector), where k = q +iy, 
and 

k 2 =  . r 2 { ~ t - - f + i [ ( ~ - ~ $ t 2 ) ] ' / 2 } .  (39)  
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Writing, for brevity, u ( b ) =  u I ,  etc., the boundary conditions give 

1 0 1 0 
Y 4 -Y 9 

U ;  +f.rr2u, U; +i.rr2vl w; +f.rr2w, ry +f.rr2rl 
u ; ” + E * u ’ ,  u ; ’ + E * v j  w Y + E * w {  r ;”+E*ri  

A =  = O  (40) 

where A is a function of E for a given 6, since y, q, u I ,  U {  etc., can be expressed as a 
function of E. Thus the required eigenvalues of E are obtained from the zero values 
of the determinant A. In order for k in (39) to be complex, t 2  must be smaller than 
8/9, i.e. E must lie below the baseline value of the infinite cell with no free surfaces, 
Eli,,,. It can be shown that this condition holds for 6> 1.86. Table 1 shows the value 
of E of the fundamental mode for various values of 6. Modes lying higher than Eli,,, 
can be handled be defining a single new function u ( z )  

u ( z ) = ( l / k + ) s i n  k,z-(l /k-)sin k - z  ( 4 1 )  

g ( z )  = u ( 2 )  + a u ’ ( z ) .  ( 4 2 )  

and 

Table 1. Calculated values of the minimum energy parameter E(2D) of the fundamental 
quasi-longitudinal mode for a gel contained in a rigid cell of dimensions 2 x 2  x b units 
with fixed boundary conditions, and a free surface at b. To obtain the three-dimensional 
values E(3~)corresponding to these results, the required operation is E(3D) = E(2D) + ?r2/4. 

b E 

1.9 
2.0 
2.5 
3.0 
4.0 
6.0 

10.0 
CD 

9.248 
9.160 
8.972 
8.950 
8.927 
8.900 
8.8971 
8.8970 

Condition (42)  automatically takes account of the rigid boundary conditions at z = 0. 
The free surface conditions (30) and (31) lead to the relation 

A D - B C = O  (43) 
where 

A = U’( + f r 2 u , ,  

C = U;“ + E * u ’ , ,  

B = U;’ Sf. lr2u‘, ,  

D = U ?  + E*u;’ .  ( 4 4 )  
If E > r2, one of the values of k becomes purely imaginary, and  in order to keep all 
the quantities real, we set 

k’lF2 = ( i t 2 - $ ) I / 2  - ( ‘ t  - L )  
2 3 ,  

while 
k:/.rr2=(at2-6)”’+(ft-f) .  
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Thus ( 4 1 )  becomes 

u(z) = ( l / k + )  sin(k+z) - (  l / k )  sinh(k-z). (45) 

In figure 2 are shown the displacement vectors characteristic of the first seven quasi- 
longitudinal modes for the specific case b = 6 (i.e. the ratio length/width of the cell 
equal to 3). Clearly for the fundamental mode (QLO), most of the displacement is 
confined near the surface; this contrasts with the next two excited modes QL 1 and  
Q L ~ ,  in which the displacement at the surface is small. To obtain the values of E 
corresponding to the three-dimensional rectangular cell, as indicated in (17) the constant 
r2 /4  must be added to the values of E ( ~ D )  quoted in the figure. 

3.3. Quasi-transverse modes 

For the quasi-transverse modes we select a trial function which approximates the 
motion to a movement parallel to the xy plane: 

% = ux(x, y ) g ( z ) ,  u y  = uy(x, y ) g ( z ) ,  U, = 0. ( 4 6 )  

We calculate the quantities J and I so as to take account of the free surface contribution 
at z = b. As in the last section, the fixed end is located at  z = 0. One gets 

J = J ( z D )  [ob g(z)’  dz  

I = I (2D)  g(z)* dz  + J ( ~ D )  g‘(z)* dz. 
( 4 7 )  

lob lob 
Now the solution to the two-dimensional problem of the square was obtained in 
reference A: the eigenvalue found for E in this case was Eo = 13.087. Thus we may set 

J ( ~ D )  = 1 

with 

Z(2D)= Eo (=13.087). 

This gives from (47) 

S J = 2  gSgdz Iob 
and 

S I  = EoSJ + 2  g’Sg’ dz  Iob 
= EoSJ + 2 g ’ ( b ) S g ( b ) - 2  g”Sg dz. Iob 

In order for I to be an  extremum for any Sg, 

and hence 

g ” + ( E  -EO)g=O. 

(48) 

(49) 
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The boundary condition (48) ensures that the solutions correspond to even modes in 
an analogous cell of length 2b which is closed at both ends. (This is a result of the 
approximation adopted here that U, = 0.) It follows from (48) and (49) that 

g(z) = cos[(n +i>(..z/b)l, 
and hence 

E = E,+(n +f)’(57’/6’). 

4. Viscosity effects 

The effects of viscosity in an oscillating gel have been considered by Nossal (1979), 
and it is not necessary to reproduce his results here. On the simplest assumption, that 
of a Newtonian polymer-polymer viscosity described by the single parameter 7, the 
angular frequencies of the resonances w can be shown to be shifted to lower values w ’  

O ‘  = c,,E ”’[l - ( ~ ’ / 4 G 2 ) ~ ~ , E ] ’ ’ ’  

where c,, is the transverse velocity of sound. 
The characteristic width of these resonances is given by 

The measurements reported in the following section of this paper show resonances 
with quite high quality factors (0 b 20), and therefore the frequency shifts are expected 
to be, at most, of the order of a few tenths of a percent. 

5. Experimental observations 

In reference A, experimental evidence was shown of the quasi-transverse mode in a 
gel contained in a transparent cell of square cross-section. No comparison was made, 
however, with the frequencies of other modes in the system. Nossal and Jolly (1982), 
on the other hand, were able to compare the frequency of the quasi-transverse mode 
in a rectangular cell with that of a simple torsional mode for a gel of similar composition 
in a cylindrical cell. For the cell geometry used by these authors, the observed ratio 
of these two frequencies was 1.21; the calculated ratio, using (51) above, is 1.226. 

The present experimental investigation is intended to examine the relationship 
between the quasi-transverse and the quasi-longitudinal oscillations in a rectangular 
sample with an open end. The dimensions of the sample (1 x 1 x 3 cm’) were such that, 
in the nomenclature of § 3.2.2 above, the effective half-length of the cell (6 units- 
recalling that the surface is free) was greater than 1.86 units, and therefore the 
fundamental quasi-longitudinal mode corresponds to a Iacalised mode with a value 
of E lying below that of an infinitely long sample with both ends closed. 

The experimental arrangement is shown in figure 3. The glass cell containing the 
gel is fixed either horizontally or vertically on a wheel the vertical axle of which is the 
rotor of a small (2 W) DC electric motor. The motor was powered by a programmable 
low-frequency signal generator (ENERTEC), and the frequency output of the generator 
monitored with a frequency counter. When the cell is in the horizontal position, a 
small ( 1  mm x 0.5 mm) mirror, consisting of a fragment of gold plated microscope cover 
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Figure 3. Experimental arrangement. The laser beam is reflected from a small mirror (m), 
placed on or in the surface of the gel, onto a screen at a distance r from the sample. The 
rectangular glass cell is mounted rigidly on a wheel either vertically ( a )  or horizontally 
( b ) ,  and the wheel is oscillated about its axis by the DC motor, thereby exciting quasi- 
transverse ( a )  or quasi-longitudinal ( b )  modes in the gel. The horizontal plane lies in the 
plane of the paper. 

slide, was placed flat on the surface of the gel, oriented so that the long axis was 
vertical. Illumination of the mirror with a low-power helium-neon laser caused a 
bright spot to be reflected on a suitable screen. When the driving frequency supplied 
to the motor coincided with a resonance, the spot broadened out into a line whose 
length was measured with a tape rule. 

For the quasi-transverse modes, the cell was fixed vertically with its z-axis coincident 
with the axle of the motor. The small mirror was inserted vertically into the material 
of the gel. This insertion cuts the surface of the gel, but the small size of the mirror 
reduces the extent of the damage. As the polyacrylamide gels used in these experiments 
have adhesive surfaces, not only do  they stick to the glass cell, but also to the mirror, 
and also small cuts tend to heal; this further reduces the perturbation introduced by 
the mirror. 

The gels used in this investigation were prepared using a ratio of acrylamide to 
bisacrylamide of 37.5 by weight, using a procedure which has been described previously 
(Hecht and  Geissler 1978). Observation on gels with an  acrylamide concentration of 
3% gave spectra with poorly resolved resonances, presumably due to dissipative 
processes in the gel. To circumvent this difficulty, 5% gels were used. Even though 
the precursor fluid in the optical cells was capped with a thin (-3 mm) layer of water 
in order to limit contact with the air during gelation and to obtain a flat surface, 
perfectly flat upper surfaces were not obtained. It was also obvious to the naked eye 
from the refractive index gradient that polymerisation within the first millimetre below 
the top  surface was inhomogeneous. Although in principle this inhomogeneous region 
could be sliced off, the consistency of the gels is such that the resulting surface deviates 
grossly from flatness, thus leading to spurious resonances at  frequencies below the 
fundamental QL mode. It was found that such spurious resonances could be greatly 
reduced by carefully removing the gel from the cell using a hypodermic syringe, and  
then reinserting it upside down, so that the flat surface moulded by the cell bottom 
now becomes the free surface. After a few minutes the gel readheres to the glass 
surface, and resonances again become visible. In figure 4 it can be seen that the 
spurious resonances (below 160 Hz) have been reduced to an  unresolved shoulder. 
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140 180 220 
Frequency (Hzl 

Figure 4. Spectrum of the quasi-longitudinal modes excited in a 1 x 1 x3 cm3 gel having 
a free surface. The observed fundamental frequency occurs at 168.2 Hz (QL 0). The arrows 
indicate the expected frequencies of the modes QL 1 to QL 6 ,  on the assumption that the 
gel is heid rigidly at all the boundaries below the free surface. 

Before discussing the results, two further points should be raised. Firstly, the 
presence of the mirror must obviously perturb the results. To calculate this effect 
approximately, we assume that a thin mirror of density ~ g c m - ~  and breadth a is 
embedded in an infinite medium of zero density and of shear modulus G. It is easy 
to show that the fundamental frequency of this oscillating system is roughly 
(67rG/ c~a)’” .  The ratio of this frequency to the characteristic fundamental frequency 
calculated above for the unperturbed system is therefore approximately (3 7 r p / 2 E c ~ a ) ’ ” ,  
where p is the density of the gel (-1 g ~ m - ~ ) ,  and U is measured to be 0.036 g cm-2. 
For a mirror of width a = 0.05 cm, it can be seen that the perturbing frequency is some 
14 times higher than the fundamental QT mode investigated in this paper, and therefore 
may be neglected. A similar argument shows that the depression in the fundamental 
frequency caused by the presence of the mirror is also extremely small. 

A second point of interest concerns the excitation and detection system used here. 
Like the pioneering arrangement of Brenner et a1 (1978), the excitation system does 
not generate harmonics of the driving frequency, unless of course it is overdriven, 
which is not the case here. In contrast, however, Nossal’s detection system analyses 
the characteristic frequencies of a diffraction fringe produced by a bright spot in the 
sample: if the maximum brightness of the fringe is located close to the detector, then 
a strong contribution from harmonics will be detected. The present arrangement, 
although somewhat tedious, is not susceptible to harmonics, since the whole of the 
trajectory of the bright fringe is followed. The absence of harmonics makes the 
interpretation of the spectra simpler. Another important advantage of the present 
system is that not only the magnitude but also the direction of the displacement vector 
is displayed on the screen; this provides a check on whether the displacement is parallel 
to the excitation. 

6. Results and discussion 

In figure 4 is shown the spectrum of the quasi-longitudinal mode in a 5 %  polyacrylamide 
gel with the fundamental mode Q L O  at 168 Hz. The programmable generator gives 
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frequencies with a precision of 0.2 Hz up to 200 Hz, but the measurements shown are 
represented in steps of 0.8 Hz. Above 200 Hz, the minimum step length was 2 Hz. 

The expected frequencies of QL 1-6 are shown with arrows, on the basis of the QL 0 
assignment. The minimum occurring at 171.8 Hz does not in fact correspond to a 
linear motion of the reflection spot, but to a small ellipse, suggesting a combination 
of two weak close-lying resonances; two possible close-lying resonances are QL 1 and 
2, whose spatial distribution (figure 2) would be favourable to such a combination. If 
this interpretation is correct, the poorly resolved weak resonance observed at 172.6 Hz 
can be identified with QL 2, and QL 1 would be hidden in the unresolved shoulder at 
about 17 1.5 Hz. The shift to lower frequencies may be explained by imperfect contact 
of the rougher gel surface at the lower end of the cell; the observed weakness of these 
two resonances is in qualitative agreement with the amplitude of the function g ( z )  at 
the free surface (figure 2). 

The remaining four resonances are relatively strong, and also show a small shortfall 
in comparison with the calculated frequencies (table 2). 

Table 2. Quasi-longitudinal waves in a finite gel: comparison between theory and 
experiment. 

Calculated Observed frequency 
Mode (W (Hz) 

Sample 1 Sample 2 

QL 0 (basis for calculation) 168.2 168.2 
QL 1 172.7 not resolved - 
QL 2 173.8 ? 172.6 - 
QL 3 178.6 176.6 - 
QL 4 189.1 185.8 185 
QL 5 202.5 200.0 198 
QL 6 218.3 2 1 8 1  I - 

Figure 5. Spectrum (in arbitrary units) of the quasi-transverse modes excited in the same 
gel as in figure 4. The vertical arrows indicate the expected positions of the modes QT 0 
and QT 1 on the basis of the identification of the resonance occurring at 168.2 Hz in figure 
4 with the Q L O  mode. The experimental uncertainty in the amplitude measurement is 
estimated to be about one quarter of the width of the principal diffraction fringe generated 
by the mirror: the width of this fringe for this experiment is shown in the upper right part 
of the figure. 
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In figure 5 is shown the spectrum of the quasi-transverse modes, obtained with the 
cell fixed vertically on the mounting. No measurable response was observed anywhere 
below 170 Hz, and consequently only the corresponding part of the spectrum is shown 
here. The main resonance occurs at 182.5 Hz, with a quality factor of about 35, while 
a broad secondary resonance is just visible between 196 and 204 Hz. Using as basis 
frequency the QL mode at 168.2 Hz, the following correspondence can be calculated. 

Theoretical value 
(eq. (50)), based on Observed 

Mode QL 0 = 158.2 Hz value (Hz) 

QT 0 182.6 182.5 
QT 1 198.4 197-202 

The gels were finally extracted from the cell and their shear modulus measured 
directly as described by Geissler and  Hecht (1980). This gave 

Sample 1 Sample 2 

G (dyn m C 2 )  ( 2 . 6 8 i 0 . 3 )  x I O 4  ( 2 .90 i0 .4 )  X I O 4  
Density (g 1.019 
Estimated QT 0 

Observed QT 0 (Hz) 182.5 183.4 
from G and eq. (50) (Hz) 188* 10 1961 I4 

As these samples were prepared under identical conditions, the two results for G give 
a measure of the error involved in the direct method, which is clearly greater than the 
error in the frequency measurement. 

A final remark concerns the theoretical analysis developed above, in which the 
effects of surface tension were explicitly excluded. This exclusion requires justification. 
It can be seen that for a localised mode of wave number k, the energy of the displacement 
associated with the surface tension is roughly A / k 2 ,  where A is the coefficient of 
surface tension. The contribution to the energy coming from the shear elastic modulus 
G of the bulk medium is, in the same approximation, G / k 3 .  The ratio of these 
contributions A k / G ,  is very small for the gels investigated here ( A  - 80 dyn cm-', 
G - 2.5 x I O 4  dyn cm-2, k - 1 cm-'), and  consequently the effects of surface tension 
may be neglected. 

We conclude that the experimental results are in good agreement with the frequen- 
cies predicted by the variational analysis proposed here. The disparities between the 
calculated and  the observed frequencies of the higher excited modes are very small, 
and can be explained either by slight departures from the fixed boundary conditions 
at the lower end of the gel, or by the inadequacy of the trial functions used in the 
calculation. The agreement between the theoretical ratio of the QT 0 to the QL 0 mode 
and the observed ratio is excellent. Finally, our measurements confirm the theoretical 
prediction of the novel localised mode described in this paper. 
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Appendix 

This appendix sets forth the method whereby the three-dimensional quasi-longitudinal 
case may be reduced to a two-dimensional problem. We specify an approximate form 
for the displacement vector which is consistent both with the boundary conditions and 
with the observed nature of the vibrations. We are here interested in the movement 
generated by a rotational excitation about the y-axis (i.e. perpendicular to the C,(z) 
axis of the cell); this mode is called quasi-longitudinal, since it involves motion along 
the length of the cell. This approximation, which neglects the small component U, in 
U, must satisfy the rigid boundary condition at y = f I ,  and is written in the form of 
the vector potential 

A,=O, A , = - ~ ( x ,  Z ) C O S $ T ~ ,  A , = O ,  (AI) 

U, = u,(x, z )  cos f r y ,  ('42) 

which yields 

U, = 0, U, = u,(x, z )  cos +Ty. 

In (A2), u,(x, z) and u,(x, z) represent the solutions to the two-dimensional case. One 
thus obtains for the volume integral 

J = J (2D)  

7T2 
= I"(2D) +- J(2D), 

4 

where 

I"(~D) = 1 1 (dul/dx,)' dz  dx, with i , j  = x or z. 

To obtain Is, we insert n = (0, 0, - 1) into (14), giving at z = 0 

Integration by parts gives 

and the incompressibility condition, together with relation (A2) gives 

au,/az = -au,/ax. 

Hence, 
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Thus the problem reduces to the two-dimensional one of a rectangle with a free 
end at z = 0, with the following definitions 

calculated at z = 0. It follows from (A3), (A4) and (AS) that 

E(3D) = E(2D)  far2. 

It should be recalled that the choice of the approximate function (A I )  limits us to the 
quasi-longitudinal modes. 
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